阻燃剂是赋予易燃聚合物难燃性的功能性助剂,主要是针对高分子材料的阻燃设计的;阻燃剂有多种类型,按使用方法分为添加型阻燃剂和反应型阻燃剂。添加型阻燃剂是通过机械混合方法加入到聚合物中,使聚合物具有阻燃性的,目前添加型阻燃剂主要有有机阻燃剂和无机阻燃剂,卤系阻燃剂(有机氯化物和有机溴化物)和非卤。有机是以溴系、磷氮系、氮系和红磷及化合物为表示的一些阻燃剂,无机主要是三氧化二锑、氢氧化镁、氢氧化铝,硅系等阻燃体系。反应型阻燃剂则是作为一种单体参加聚合反应,因此使聚合物本身含有阻燃成分的,其优点是对聚合物材料使用性能影响较小,阻燃性持久。阻燃剂是保护人民生命财产而发展起来的一门科学。杭州膨胀型阻燃剂用途

阻燃剂是一种赋予易燃聚合物阻燃性的功能添加剂。可普遍用于织物、木材、塑料、橡胶、聚氨酯等的阻燃。有时,使用阻燃剂时,阻燃剂会失效。那么使用阻燃剂后阻燃剂失效的原因是什么呢?1.不同的阻燃剂。不同的阻燃剂有不同的维护时间,如一次性阻燃剂和耐久阻燃剂的失效时间不同;水性阻燃剂和阻燃清漆的阻燃效果和失效时间不同。显然,阻燃清漆处理的木材阻燃效果和有效时间更长。2.阻燃剂的使用方法。阻燃剂有两种:内添加和外添加。内加是在形成阻燃剂之前加入阻燃剂,混合搅拌形成,外加是用物理方法浸泡喷洒阻燃剂。显然,在里面加入阻燃剂的有效时间越长越好。3.环境因素。处理后的阻燃剂存放(放置)的环境不同,阻燃剂的有效时间也不同。比如,由于室外阳光、温度、空气的影响,室外的故障速度明显快于室内。4.阻燃处理时间过长。如果距离上次阻燃处理超过半年以上,阻燃效果会比阻燃开始时差或无效。杭州膨胀型阻燃剂用途氢氧化铝作为阻燃材料,用于弹性体、热固性树脂及热塑性塑料。

阻燃剂的阻燃机理:1、遮盖效果。阻燃剂在可燃材料中加入阻燃剂后,能在高温下形成玻璃状或稳定的泡沫覆盖层,隔绝氧气,起到隔热、隔氧和防止可燃气体向外逸出的作用,从而达到阻燃的目的。例如有机磷阻燃剂加热时可以产生结构更稳定的交联固体物质或碳化层。碳化层的形成一方面可以防止聚合物进一步热解,另一方面可以防止热分解产物进入气相参与燃烧过程。2、连锁反应的阻止。根据燃烧的链式反应理论,维持燃烧需要自由基。阻燃剂可以作用于气相燃烧区,捕获燃烧反应中的自由基,从而阻止火焰传播,降低燃烧区的火焰密度,较终降低燃烧反应速度直至终止。例如,含卤阻燃剂的蒸发温度与聚合物的分解温度相同或相近。当聚合物受热分解时,阻燃剂也会挥发。此时,含卤阻燃剂和热分解产物同时处于气相燃烧区,因此卤素可以在燃烧反应中捕获自由基,干扰燃烧的链式反应。
氢氧化铝(ATH)是一种具有环境安全性和使用安全性的无毒、没有伤害的无机阻燃剂,其消耗量在所有的阻燃剂中稳居前列。作为无机阻燃剂,国内氢氧化铝在阻燃剂行业中的应用由于缺乏超细化工品种,导致产品质量较差,科技含量较低,只适用于建筑交通技术要求不高的领域,在对阻燃剂性能要求较高的电子工业、航空等高科技领域中的应用则较少。目前,国产氢氧化铝阻燃剂各厂家的质量参差不齐,差别在于对材料的物理机械性能影响上,而影响材料物理机械性能较根本的原因是氢氧化铝的粒径大小和粒度分布,粒度越细,材料的抗张强度和抗撕强度越好,氢氧化铝粒度的大小也直接影响阻燃剂的阻燃性能。阻燃前了解清楚阻燃剂使用方法、温度及阻燃时间,以免浪费阻燃剂及材质。

阻燃剂能够保持皮革优良的力学性能和湿热稳定性。阻燃剂助力碳中和,有些阻燃剂可以消化吸收塑料在点燃时产生的热量,从而降低被点燃的塑料的温度,防止其重新溶解或开裂,和终止可燃气体源因此,可扑灭火焰,如甲基对硫磷氮溶胀型阻燃剂;例如硼砂有10个分子结构的结晶水,因为放出结晶水会俘获,因为吸热反应抑制了原料温度的升高,进而导致实际效果阻燃性。水合氧化铝的阻燃作用也是其吸热电效应的原因,因为它在受热时会变干。浸渍处理,阻燃剂的品种均为水溶性溶剂型,可采用浸渍加药方式。氢氧化镁是一种白色至浅白色晶状体粉末,相对密度,莫氏硬度。武汉氮系阻燃剂有哪些
多数阻燃剂是通过若干机理共同作用达到阻燃目的,如吸热作用、抑制链反应、不燃气体的窒息作用等。杭州膨胀型阻燃剂用途
无机盐阻燃剂是适应塑料阻燃领域推出的无机化合物阻燃助剂材料,它具有非常高的性价比。它主要应用在通用塑料聚氯乙烯PVC、电路覆铜板(PCB)、聚乙烯(PE)以及工程塑料聚酰胺(PA),乙烯-醋酸乙烯共聚物(EVA)鞋底、薄膜、电线电缆中,无机盐阻燃剂经过了特殊的无机矿物的精选高温提纯和活化处理,很大程度的提升了潜热吸热转化功能,材质爽滑,分散性好,并且具有与聚合物比较强的的附着功能,比较高的可以达到UL94等级V1、V0级别。杭州膨胀型阻燃剂用途
文章来源地址: http://jxhxp.dzyqjjgsb.chanpin818.com/hcclzj/hcclzrj/deta_28099269.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。